Skip to Main Content (Press Enter)

Vienna Series in Theoretical Biology

Found in Science & Technology
Cognitive Biology by
Coming soon (04-30-24)

Cognitive Biology

Book 11
Paperback $50

Vienna Series in Theoretical Biology : Titles in Order

Book 25
Can we can use the patterns and processes of convergent evolution to make inferences about universal laws of life, on Earth and elsewhere?In this book, Russell Powell investigates whether we can use the patterns and processes of convergent evolution to make inferences about universal laws of life, on Earth and elsewhere. Weaving together disparate philosophical and empirical threads, Powell offers the first detailed analysis of the interplay between contingency and convergence in macroevolution, as it relates to both complex life in general and cognitively complex life in particular. If the evolution of mind is not a historical accident, the product of convergence rather than contingency, then, Powell asks, is mind likely to be an evolutionarily important feature of any living world? Stephen Jay Gould argued for the primacy of contingency in evolution. Gould’s “radical contingency thesis” (RCT) has been challenged, but critics have largely failed to engage with its core claims and theoretical commitments. Powell fills this gap. He first examines convergent regularities at both temporal and phylogenetic depths, finding evidence that both vindicates and rebuffs Gould’s argument for contingency. Powell follows this partial defense of the RCT with a substantive critique. Among the evolutionary outcomes that might defy the RCT, he argues, cognition is particularly important—not only for human-specific issues of the evolution of intelligence and consciousness but also for the large-scale ecological organization of macroscopic living worlds. Turning his attention to complex cognitive life, Powell considers what patterns of cognitive convergence tell us about the nature of mind, its evolution, and its place in the universe. If complex bodies are common in the universe, might complex minds be common as well?
Book 24
An analysis of patterns of convergent evolution on Earth that suggests where we might look for similar convergent forms on other planets.Why does a sea lily look like a palm tree? And why is a sea lily called a “lily” when it is a marine animal and not a plant? Many marine animals bear a noticeable similarity in form to land-dwelling plants. And yet these marine animal forms evolved in the oceans first; land plants independently and convergently evolved similar forms much later in geologic time. In this book, George McGhee analyzes patterns of convergent evolution on Earth and argues that these patterns offer lessons for the search for life elsewhere in the universe.Our Earth is a water world; 71 percent of the earth’s surface is covered by water. The fossil record shows that multicellular life on dry land is a new phenomenon; for the vast majority of the earth’s history—3,500 million years of its 4,560 million years of existence—complex life existed only in the oceans. Explaining that convergent biological evolution occurs because of limited evolutionary pathways, McGhee examines examples of convergent evolution in forms of feeding, immobility and mobility, defense, and organ systems. McGhee suggests that the patterns of convergent evolution that we see in our own water world indicate the potential for similar convergent forms in other water worlds. We should search for extraterrestrial life on water worlds, and for technological life on water worlds with continental landmasses.
Book 23
A comprehensive treatment of the concept of causation in evolutionary biology that makes clear its central role in both historical and contemporary debates.
Most scientific explanations are causal. This is certainly the case in evolutionary biology, which seeks to explain the diversity of life and the adaptive fit between organisms and their surroundings. The nature of causation in evolutionary biology, however, is contentious. How causation is understood shapes the structure of evolutionary theory, and historical and contemporary debates in evolutionary biology have revolved around the nature of causation. Despite its centrality, and differing views on the subject, the major conceptual issues regarding the nature of causation in evolutionary biology are rarely addressed. This volume fills the gap, bringing together biologists and philosophers to offer a comprehensive, interdisciplinary treatment of evolutionary causation.
Contributors first address biological motivations for rethinking evolutionary causation, considering the ways in which development, extra-genetic inheritance, and niche construction challenge notions of cause and process in evolution, and describing how alternative representations of evolutionary causation can shed light on a range of evolutionary problems. Contributors then analyze evolutionary causation from a philosophical perspective, considering such topics as causal entanglement, the commingling of organism and environment, and the relationship between causation and information.
Contributors
John A. Baker, Lynn Chiu, David I. Dayan, Renée A. Duckworth, Marcus W Feldman, Susan A. Foster, Melissa A. Graham, Heikki Helanterä, Kevin N. Lala, Armin P. Moczek, John Odling-Smee, Jun Otsuka, Massimo Pigliucci, Arnaud Pocheville, Arlin Stoltzfus, Karola Stotz, Sonia E. Sultan, Christoph Thies, Tobias Uller, Denis M. Walsh, Richard A. Watson
Book 22
Scholars from a variety of disciplines consider cases of convergence in lithic technology, when functional or developmental constraints result in similar forms in independent lineages.

Hominins began using stone tools at least 2.6 million years ago, perhaps even 3.4 million years ago. Given the nearly ubiquitous use of stone tools by humans and their ancestors, the study of lithic technology offers an important line of inquiry into questions of evolution and behavior. This book examines convergence in stone tool-making, cases in which functional or developmental constraints result in similar forms in independent lineages. Identifying examples of convergence, and distinguishing convergence from divergence, refutes hypotheses that suggest physical or cultural connection between far-flung prehistoric toolmakers. Employing phylogenetic analysis and stone-tool replication, the contributors show that similarity of tools can be caused by such common constraints as the fracture properties of stone or adaptive challenges rather than such unlikely phenomena as migration of toolmakers over an Arctic ice shelf.

Contributors
R. Alexander Bentley, Briggs Buchanan, Marcelo Cardillo, Mathieu Charbonneau, Judith Charlin, Chris Clarkson, Loren G. Davis, Metin I. Eren, Peter Hiscock, Thomas A. Jennings, Steven L. Kuhn, Daniel E. Lieberman, George R. McGhee, Alex Mackay, Michael J. O’Brien, Charlotte D. Pevny, Ceri Shipton, Ashley M. Smallwood, Heather Smith, Jayne Wilkins, Samuel C. Willis, Nicolas Zayns
Book 21
Contributors from a range of disciplines consider the disconnect between human evolutionary studies and the rest of evolutionary biology.

The study of human evolution often seems to rely on scenarios and received wisdom rather than theory and methodology, with each new fossil or molecular analysis interpreted as supporting evidence for the presumed lineage of human ancestry. We might wonder why we should pursue new inquiries if we already know the story. Is paleoanthropology an evolutionary science? Are analyses of human evolution biological? In this volume, contributors from disciplines that range from paleoanthropology to philosophy of science consider the disconnect between human evolutionary studies and the rest of evolutionary biology. All of the contributors reflect on their own research and its disciplinary context, considering how their fields of inquiry can move forward in new ways. The goal is to encourage a more multifaceted intellectual environment for the understanding of human evolution.

Topics discussed include paleoanthropology’s history of procedural idiosyncrasies; the role of mind and society in our evolutionary past; humans as large mammals rather than a special case; genomic analyses; computational approaches to phylogenetic reconstruction; descriptive morphology versus morphometrics; and integrating insights from archaeology into the interpretation of human fossils.

Contributors 
Markus Bastir, Fred L. Bookstein, Claudine Cohen, Richard G. Delisle, Robin Dennell, Rob DeSalle, John de Vos, Emma M. Finestone, Huw S. Groucutt, Gabriele A. Macho, Fabrizzio Mc Manus, Apurva Narechania, Michael D. Petraglia, Thomas W. Plummer, J.W. F. Reumer, Jeff Rosenfeld, Jeffrey H. Schwartz, Dietrich Stout, Ian Tattersall, Alan R. Templeton, Michael Tessler, Peter J. Waddell, Martine Zilversmit
Book 20
Broad perspective on collectivity in the life sciences, from microorganisms to human consensus, and the theoretical and empirical opportunities and challenges.Many researchers and scholars in the life sciences have become increasingly critical of the traditional methodological focus on the individual. This volume counters such methodological individualism by exploring recent and influential work in the life sciences that utilizes notions of collectivity, sociality, rich interactions, and emergent phenomena as essential explanatory tools to handle numerous persistent scientific questions in the life sciences. The contributors consider case studies of collectivity that range from microorganisms to human consensus, discussing theoretical and empirical challenges and the innovative methods and solutions scientists have devised.The contributors offer historical, philosophical, and biological perspectives on collectivity, and describe collective phenomena seen in insects, the immune system, communication, and human collectivity, with examples ranging from cooperative transport in the longhorn crazy ant to the evolution of autobiographical memory. They examine ways of explaining collectivity, including case studies and modeling approaches, and explore collectivity’s explanatory power. They present a comprehensive look at a specific case of collectivity: the Holobiont notion (the idea of a multi-species collective, a host and diverse microorganisms) and the hologenome theory (which posits that the holobiont and its hologenome are a unit of adaption). The volume concludes with reflections on the work of the late physicist Eshel Ben-Jacob, pioneer in the study of collective phenomena in living systems.Contributors
Oren Bader, John Beatty, Dinah R. Davison, Daniel Dor, Ofer Feinerman, Raghavendra Gadagkar, Scott F. Gilbert, Snait B. Gissis, Deborah M. Gordon, James Griesemer, Zachariah I. Grochau-Wright, Erik R. Hanschen, Eva Jablonka, Mohit Kumar Jolly, Anat Kolumbus, Ehud Lamm, Herbert Levine, Arnon Levy, Xue-Fei Li, Elisabeth A. Lloyd, Yael Lubin, Eva Maria Luef, Ehud Meron, Richard E. Michod, Samir Okasha, Simone Pika, Joan Roughgarden, Eugene Rosenberg, Ayelet Shavit, Yael Silver, Alfred I. Tauber, Ilana Zilber-Rosenberg
Book 19
The scientific achievements and forgotten legacy of a major Austrian research institute, from its founding in 1902 to its wartime destruction in 1945.The Biologische Versuchsanstalt was founded in Vienna in 1902 with the explicit goal to foster the quantification, mathematization, and theory formation of the biological sciences. Three biologists from affluent Viennese Jewish families—Hans Przibram, Wilhelm Figdor, and Leopold von Portheim–founded, financed, and nurtured the institute, overseeing its development into one of the most advanced biological research institutes of the time. And yet today its accomplishments are nearly forgotten. In 1938, the founders and other members were denied access to the institute by the Nazis and were forced into exile or deported to concentration camps. The building itself was destroyed by fire in April 1945. This book rescues the legacy of the “Vivarium” (as the Institute was often called), describing both its scientific achievements and its place in history.The book covers the Viennese sociocultural context at the time of the Vivarium’s founding, and the scientific zeitgeist that shaped its investigations. It discusses the institute’s departments and their research topics, and describes two examples that had scientific and international ramifications: the early work of Karl von Frisch, who in 1973 won the Nobel Prize in Physiology or Medicine; and the connection to Cold Spring Harbor Laboratory in New York.Contributors
Heiner Fangerau, Johannes Feichtinger, Georg Gaugusch, Manfred D. Laubichler, Cheryl A. Logan, Gerd B. Müller, Tania Munz, Kärin Nickelsen, Christian Reiß, Kate E. Sohasky, Heiko Stoff, Klaus Taschwer
Book 18
Scholars consider the origins and consequences of the evolution of multicellularity, addressing a range of organisms, experimental protocols, theoretical concepts, and philosophical issues.

The evolution of multicellularity raises questions regarding genomic and developmental commonalities and discordances, selective advantages and disadvantages, physical determinants of development, and the origins of morphological novelties. It also represents a change in the definition of individuality, because a new organism emerges from interactions among single cells. This volume considers these and other questions, with contributions that explore the origins and consequences of the evolution of multicellularity, addressing a range of topics, organisms, and experimental protocols.
Each section focuses on selected topics or particular lineages that present a significant insight or challenge. The contributors consider the fossil record of the paleontological circumstances in which animal multicellularity evolved; cooptation, recurrent patterns, modularity, and plausible pathways for multicellular evolution in plants; theoretical approaches to the amoebozoa and fungi (cellular slime molds having long provided a robust model system for exploring the evolution of multicellularity), plants, and animals; genomic toolkits of metazoan multicellularity; and philosophical aspects of the meaning of individuality in light of multicellular evolution.
Contributors
Maja Adamska, Argyris Arnellos, Juan A. Arias, Eugenio Azpeitia, Mariana Benítez, Adriano Bonforti, John Tyler Bonner, Peter L. Conlin, A. Keith Dunker, Salva Duran-Nebreda, Ana E. Escalante, Valeria Hernández-Hernández, Kunihiko Kaneko, Andrew H. Knoll, Stephan G. König, Daniel J. G. Lahr, Ottoline Leyser, Alan C. Love, Raul Montañez, Emilio Mora van Cauwelaert, Alvaro Moreno, Vidyanand Nanjundiah, Aurora M. Nedelcu, Stuart A. Newman, Karl J. Niklas, William C. Ratcliff, Iñaki Ruiz-Trillo, Ricard Solé
Book 17
Empirical and philosophical perspectives on scaffolding that highlight the role of temporal and temporary resources in development across concepts of culture, cognition, and evolution.”Scaffolding” is a concept that is becoming widely used across disciplines. This book investigates common threads in diverse applications of scaffolding, including theoretical biology, cognitive science, social theory, science and technology studies, and human development. Despite its widespread use, the concept of scaffolding is often given short shrift; the contributors to this volume, from a range of disciplines, offer a more fully developed analysis of scaffolding that highlights the role of temporal and temporary resources in development, broadly conceived, across concepts of culture, cognition, and evolution.The book emphasizes reproduction, repeated assembly, and entrenchment of heterogeneous relations, parts, and processes as a complement to neo-Darwinism in the developmentalist tradition of conceptualizing evolutionary change. After describing an integration of theoretical perspectives that can accommodate different levels of analysis and connect various methodologies, the book discusses multilevel organization; differences (and reciprocality) between individuals and institutions as units of analysis; and perspectives on development that span brains, careers, corporations, and cultural cycles.Contributors
Colin Allen, Linnda R. Caporael, James Evans, Elihu M. Gerson, Simona Ginsburg, James R. Griesemer, Christophe Heintz, Eva Jablonka, Sanjay Joshi, Shu-Chen Li, Pamela Lyon, Sergio F. Martinez, Christopher J. May, Johann Peter Murmann, Stuart A. Newman, Jeffrey C. Schank, Iddo Tavory, Georg Theiner, Barbara Hoeberg Wimsatt, William C. Wimsatt
Book 16
The biological and philosophical implications of the emergence of new collective individuals from associations of living beings.Our intuitive assumption that only organisms are the real individuals in the natural world is at odds with developments in cell biology, ecology, genetics, evolutionary biology, and other fields. Although organisms have served for centuries as nature’s paradigmatic individuals, science suggests that organisms are only one of the many ways in which the natural world could be organized. When living beings work together—as in ant colonies, beehives, and bacteria-metazoan symbiosis—new collective individuals can emerge. In this book, leading scholars consider the biological and philosophical implications of the emergence of these new collective individuals from associations of living beings. The topics they consider range from metaphysical issues to biological research on natural selection, sociobiology, and symbiosis.The contributors investigate individuality and its relationship to evolution and the specific concept of organism; the tension between group evolution and individual adaptation; and the structure of collective individuals and the extent to which they can be defined by the same concept of individuality. These new perspectives on evolved individuality should trigger important revisions to both philosophical and biological conceptions of the individual.Contributors
Frédéric Bouchard, Ellen Clarke, Jennifer Fewell, Andrew Gardner, Peter Godfrey-Smith, Charles J. Goodnight, Matt Haber, Andrew Hamilton, Philippe Huneman, Samir Okasha, Thomas Pradeu, Scott Turner, Minus van Baalen
Book 15
An analysis of convergent evolution from molecules to ecosystems, demonstrating the limited number of evolutionary pathways available to life.Charles Darwin famously concluded On the Origin of Species with a vision of “endless forms most beautiful” continually evolving. More than 150 years later many evolutionary biologists see not endless forms but the same, or very similar, forms evolving repeatedly in many independent species lineages. A porpoise’s fishlike fins, for example, are not inherited from fish ancestors but are independently derived convergent traits. In this book, George McGhee describes the ubiquity of the phenomenon of convergent evolution and connects it directly to the concept of evolutionary constraint—the idea that the number of evolutionary pathways available to life are not endless, but quite limited.Convergent evolution occurs on all levels, from tiny organic molecules to entire ecosystems of species. McGhee demonstrates its ubiquity in animals, both herbivore and carnivore; in plants; in ecosystems; in molecules, including DNA, proteins, and enzymes; and even in minds, describing problem-solving behavior and group behavior as the products of convergence. For each species example, he provides an abbreviated list of the major nodes in its phylogenetic classification, allowing the reader to see the evolutionary relationship of a group of species that have independently evolved a similar trait by convergent evolution. McGhee analyzes the role of functional and developmental constraints in producing convergent evolution, and considers the scientific and philosophical implications of convergent evolution for the predictability of the evolutionary process.
Book 13
A reappraisal of Lamarckism—its historical impact and contemporary significance.In 1809—the year of Charles Darwin’s birth—Jean-Baptiste Lamarck published Philosophie zoologique, the first comprehensive and systematic theory of biological evolution. The Lamarckian approach emphasizes the generation of developmental variations; Darwinism stresses selection. Lamarck’s ideas were eventually eclipsed by Darwinian concepts, especially after the emergence of the Modern Synthesis in the twentieth century. The different approaches—which can be seen as complementary rather than mutually exclusive—have important implications for the kinds of questions biologists ask and for the type of research they conduct. Lamarckism has been evolving—or, in Lamarckian terminology, transforming—since Philosophie zoologique’s description of biological processes mediated by “subtle fluids.” Essays in this book focus on new developments in biology that make Lamarck’s ideas relevant not only to modern empirical and theoretical research but also to problems in the philosophy of biology. Contributors discuss the historical transformations of Lamarckism from the 1820s to the 1940s, and the different understandings of Lamarck and Lamarckism; the Modern Synthesis and its emphasis on Mendelian genetics; theoretical and experimental research on such “Lamarckian” topics as plasticity, soft (epigenetic) inheritance, and individuality; and the importance of a developmental approach to evolution in the philosophy of biology. The book shows the advantages of a “Lamarckian” perspective on evolution. Indeed, the development-oriented approach it presents is becoming central to current evolutionary studies—as can be seen in the burgeoning field of Evo-Devo. Transformations of Lamarckism makes a unique contribution to this research.
Book 11
An overview of current research at the intersection of psychology and biology, integrating evolutionary and developmental data and explanations.

In the past few decades, sources of inspiration in the multidisciplinary field of cognitive science have widened. In addition to ongoing vital work in cognitive and affective neuroscience, important new work is being conducted at the intersection of psychology and the biological sciences in general. This volume offers an overview of the cross-disciplinary integration of evolutionary and developmental approaches to cognition in light of these exciting new contributions from the life sciences. This research has explored many cognitive abilities in a wide range of organisms and developmental stages, and results have revealed the nature and origin of many instances of the cognitive life of organisms. Each section of Cognitive Biology deals with a key domain of cognition: spatial cognition; the relationships among attention, perception, and learning; representations of numbers and economic values; and social cognition. Contributors discuss each topic from the perspectives of psychology and neuroscience, brain theory and modeling, evolutionary theory, ecology, genetics, and developmental science.

Contributors
Chris M. Bird, Elizabeth M. Brannon, Neil Burgess, Jessica F. Cantlon, Stanislas Dehaene, Christian F. Doeller, Reuven Dukas, Rochel Gelman, Alexander Gerganov, Paul W. Glimcher, Robert L. Goldstone, Edward M. Hubbard, Lucia F. Jacobs, Mark H. Johnson, Annette Karmiloff-Smith, David Landy, Lynn Nadel, Nora S. Newcombe, Daniel Osorio, Mary A. Peterson, Manuela Piazza, Philippe Pinel, Michael L. Platt, Kristin R. Ratliff, Michael E. Roberts, Wendy S. Shallcross, Stephen V. Shepherd, Sylvain Sirois, Luca Tommasi, Alessandro Treves, Alexandra Twyman, Giorgio Vallortigara
Book 5
Experts from diverse fields, including artificial life, cognitive science, economics, developmental and evolutionary biology, and the arts, discuss modularity.Modularity—the attempt to understand systems as integrations of partially independent and interacting units—is today a dominant theme in the life sciences, cognitive science, and computer science. The concept goes back at least implicitly to the Scientific (or Copernican) Revolution, and can be found behind later theories of phrenology, physiology, and genetics; moreover, art, engineering, and mathematics rely on modular design principles. This collection broadens the scientific discussion of modularity by bringing together experts from a variety of disciplines, including artificial life, cognitive science, economics, evolutionary computation, developmental and evolutionary biology, linguistics, mathematics, morphology, paleontology, physics, theoretical chemistry, philosophy, and the arts.The contributors debate and compare the uses of modularity, discussing the different disciplinary contexts of “modular thinking” in general (including hierarchical organization, near-decomposability, quasi-independence, and recursion) or of more specialized concepts (including character complex, gene family, encapsulation, and mosaic evolution); what modules are, why and how they develop and evolve, and the implication for the research agenda in the disciplines involved; and how to bring about useful cross-disciplinary knowledge transfer on the topic. The book includes a foreword by the late Herbert A. Simon addressing the role of near-decomposability in understanding complex systems.

Find other titles in

Back to Top